Tvorba oxidové nanovrstvy na povrchu částic modifikovaného vysokopecního kalu během voltametrického cyklování v alkalickém prostředí

Publikováno v "Journal of Solid State Electrochemistry" 2020

https://doi.org/10.1007/s10008-020-04819-4

Podmínky experimentu a charakteristika vysokopecního kalu louženého v 1M HCl

Zrnitost: pod o,1 mm Elektrolyt: 1M NaOH Typ elektrody: modifikovaná uhlíková pastová elektroda Metoda: cyklická voltametrie

Tabulka 1: Složení louženého vysokopecního kalu (VPKL)

Analyt	Fe_{celk}	FeO	Mg	Al	Са	Mn	Zn
VPKL (%)	47,00	4,64	0,35	0,96	0,27	0,09	0,05

Tabulka 2: Přehled fází louženého vysokopecního kalu (VPKL)

Fáze	Amorfní fáze	Hematit	Magnetit	SiO ₂	Cristobalit
w (%)	48,76	33,01	11,47	6,17	0,59

Výsledky voltametrického cyklování

Oxidační oblast

Pík I: (E ≈ -1090 mV) oxidace Fe^o → Fe^{II} $Fe^{0} + 20H^{-} = Fe0 + H_20 + 2e^{-}$ $Fe^{0} + 20H^{-} = Fe(0H)_2 + 2e^{-}$ Pík II: (E ≈ -690 až -500 mV) oxidace Fe^{II} → Fe^{III} $3Fe0 + 20H^{-} = Fe_3O_4 + H_2O + 2e^{-}$ $3Fe(0H)_2 + 20H^{-} = Fe_3O_4 + 4H_2O + 2e^{-}$ $2Fe_3O_4 + 20H^{-} = 3\gamma Fe_2O_3 + H_2O + 2e^{-}$

Obr. 1 Srovnání CV vzorku VPKL

Redukční oblast

Složený pík III: komplexní transformace $Fe^{III} \rightarrow Fe^{II} \rightarrow Fe^{\circ}$

Pozorováno výrazné zpomalení nárůstu oxidové vrstvy po 50. cyklu.

Modelová soustava-Fe/alkalické médium

- Pozorován stejný jev → výrazné zpomalení nárůstu oxidové vrstvy po 50. cyklu (**Obr 2A**).
- Povrchová oxidová vrstva má viditelné krystalové roviny (Obr. 2B). Hlavním oxidačním produktem je nano-strukturovaný magnetit.
- Jako další oxidační produkt byl identifikován maghemit (y-Fe₂o₃).
- **Difraktogram po 10. cyklu:** kontinuální růst nanomagnetitové vrstvy během první fáze cyklování (**Obr. 3A**).
- Difraktogram po 50. cyklu: výrazná nehomogenita velikosti krystalitů → tvorba amorfních fází (Obr. 3B).
- Závěr: elektrochemické procesy jsou omezeny na porézní oxidovou vrstvu vytvořenou během cyklování.

Obr. 2 Srovnání voltamogramů týkajících se železné elektrody (A), TEM analýza oxidačního produktu (B)

Obr. 3 TEM obraz Fe elektrody po 10. (A) a 50. (B) cyklu

Vliv vodíku na tvorbu oxidové vrstvy

 Při potenciálech blízkých hodnotě E = -1500 mV dochází k vývinu vodíku.

 $2H_2O + 2e^- = H_2 + 2OH^-$

- Vodík může reagovat s oxidy vytvořené porézní povrchové vrstvy.
- Náboje píků II a III během cyklování jsou úměrné hmotnosti vytvořeného magnetitu a jeho následné redukci při zpětném scanu (Obr. 4).
- Křivka HER ukazuje změnu velikosti aktuální proudové odezvy při potenciálu E = -1500 mV po reverzním skenování.
- Závěr: Do asi 20. cyklu dochází k akumulaci korozních produktů, poté se ustavuje rovnováha.

Obr. 4 Porovnání průběhu nábojů, které odpovídají plochám píků II a III během cyklování a křivka HER

Modelová soustava - nanomagnetit

- Pozorován významný rozdíl v katodických a anodických proudech píků v cyklu ukončeném při potenciálu vývoje vodíku ve srovnání s cykly ukončenými před ním.
- Až do potenciálu E = -1200 mV (Obr. 5) jsou elektrochemické procesy téměř zanedbatelné.
- Průběhy cyklických voltamogramů (Obr. 6) vykazují identický trend jako v případě pevné Fe-elektrody.

Obr. 5 porovnání pátých cyklů při různých úrovních minim katodového potenciálu

Obr. 6 Srovnání cyklických voltamogramů do 100 cyklů.

Závěry:

- Cyklováním se na povrchu kalu tvoří nanostrukturovaná magnetitová vrstva.
- Opakovaným cyklováním dochází k transformaci hematitu na magnetit (Obr. 7).
- Na tvorbě oxidové vrstvy se v první fázi cyklování podílí vodík.
- Z průběh HER křivky lze určit, kdy tloušťka oxidové vrstvy dosáhne svého maxima (Obr. 8).

Obr. 8 Porovnání průběhu nábojů, které odpovídají plochám píků II a III během cyklování a křivka HER pro VPKL

Děkuji za pozornost