Výzkumný záměr 2:

Výzkum ostatních tuhých odpadů, materiálů a vedlejších produktů hutních a souvisejících provozů

Typy metalurgických odpadů

- Vysokopecní kal (VPK)
- Ocelárenský kal (OCK)
- Směsný kal (OCK+VPK)
- Konvertorové kaly
- Odprašky z elektrostatických a látkových filtrů

EVROPSKÁ UNIE Evropské strukturální a investiční fondy Operační program Výzkum, vývoj a vzdělávání

Současné směry výzkumu

- Odzinkování metalurgických odpadů.
 - Odstraňování zinku hydrometalurgicky kyselým loužením
 - Odstraňování zinku pyrometalurgicky rotační pec.
- Využití kyselého výluhu.
 - příprava nanokompozitů ZnO-GO a ZnO-gC₃N₄
- Elektrochemická charakterizace rezidua po kyselém loužení.
- Sorpční testy.
 - Sorpce fosfátů na původních a loužených metalurgických odpadech.
 - Sorpce léčiv na loužených metalurgických odpadech.
 - Sorpce vybraných kationtů těžkých kovů.
- Odstraňování alkálií ze vzorků metalurgických odprašků.

Hydrometalurgické odstraňování Zn

Vzorek:

Tabulka 1 Prvková analýza kovů v původním a louženém OC-kalu

- Ocelárenský kal
- Zrnitost < 0,1 mm</p>
- 0,01 M CH₃COOH

Zn (wt%)	Fe (wt%)	Pb (wt%)	Cd (wt%)	Ca (wt%)	Mn (wt%)	Cr (wt%)	Mg (wt%)
10,75	49,0	0,64	0,02	1,70	0,95	0,15	0,89
8,0	59,0	0,63	0,01	0,19	0,92	0,08	0,01

Obr. 1 Fázová analýza původního OC-kalu

Obr. 2 Časová závislost extrakce Zn z OC-kalu a selektivity pro 0,05 a 0,01M CH₃COOH

Obr. 3 RTG záznamy původního kalu a pevného rezidua po loužení v 0,01 M CH₃COOH.

Obr. 4 Fázová analýza louženého OC-kalu

- Zn vázán ve dvou formách, jako oxid a ferit zinečnatý.
- Louží se pouze oxidická forma Zn.
- S rostoucím časem loužení klesá selektivita loužení Zn.

Příprava kompozitních materiálů na bázi ZnO-GO a ZnO-gC₃N₄

Mechanismus fotokatalytického účinku kompozitů:

- Excitace elektronů v polovodivém ZnO a tvorba dvojic elektron díra (e⁻, h⁺).
- Separace elektronů a děr (zabránění opětovné rekombinace).
- Elektrony odvedené GO nebo g-C₃N₄ se podílí ve vodném prostředí na vzniku peroxidických radikálů, díry na vzniku hydroxylových radikálů.
- Oba radikály napadají molekuly odbourávaného barviva.

VŠB	TECHNICKÁ	FAKULTA	REGIONÁLNÍ MATERIÁLOVĚ
hat	UNIVERZITA	MATERIÁLOVĚ	TECHNOLOGICKÉ VÝZKUMNÉ
uh.	OSTRAVA	TECHNOLOGICKÁ	CENTRUM

Příprava výluhu ocelárenského kalu:

100 g vysušeného ocelárenského kalu o velikosti částic <0,1 mm louženo v 200 ml kyseliny octové (c = 1,0 mol.dm⁻³) při teplotě 24°C po dobu 24 h za stálého třepání (180 rpm).

Tabulka 2 Složení výluhu po ocelárenském kalu [mg/dm³]

Zn	Fe	Pb	Cd	Mn	Cr	Mg	Са
19 780	478	876	62,8	180	10,5	227	513

Jedná se vždy o octany uvedených kovů

Fotokatalytická účinnost:

Je vyjádřena úbytkem koncentrace azobarviva <u>Acid Orange 7</u> v modelovém vodném roztoku.

Kompozit ZnO-GO

Obr. 6 Srovnání fotodegradační aktivity připravených materiálů

- Kompozit ZnO_L-GO z octanového výluhu z OC-kalu vykazoval nejvyšší fotokatalytickou aktivitu.
- Dochází k synergii mezi složkami kompozitu (složky GO i ZnO vykazují nižší fotoaktivitu).
- Vyšší fotokatalytickou účinnost vzorku ZnO_L proti ZnO_P lze vysvětlit fotoaktivitou některého z dalších oxidů kovů (Fe, Mn...) přítomných ve výluhu.

Obr. 7 Srovnání fotokatalytické účinnosti připravených materiálů

Závěry:

VŠB

- Připravené kompozity ZnO-gC₃N₄ vykazují nižší fotokatalytickou aktivitu než čistý g-C₃N₄.
- Možná příčina tvorba kyanamidu zinečnatého ZnCN₂ detekovaného RTG analýzou vzorku II-V.
- Potvrzuje se pozitivní vliv příměsí dalších oxidů kovů na fotoaktivitu kompozitu.
- Nejlepší fotoaktivitu vykazoval kompozit s 10% ZnO_L (vzorek II-V).

Kompozit ZnO-gC₃N₄

Vzorky:

 $M - čistý g-C_{3}N_{4} (z \text{ melaminu});$ $I - g-C_{3}N_{4}/5\% ZnO;$ $II - g-C_{3}N_{4}/10\% ZnO;$ $III - g-C_{3}N_{4}/15\% ZnO;$ $I-V - g-C_{3}N_{4}/5\% ZnO_{L} (z výluhu);$ $II-V - g-C_{3}N_{4}/10\% ZnO_{L} (z výluhu);$ $III-V - g-C_{3}N_{4}/15\% ZnO_{L} (z výluhu);$

Elektrochemická charakterizace rezidua

Obr. 9 CV louženého kalu, 1 M NaOH, rychlost skenu 10 mV/s

Obr. 10 Srovnání CV rezidua a čistých složek

Obr. 11 Vliv vodíku na anodickou větev, Zn-ferrit

Závěry:

- Výsledky elektrochemických experimentů jsou podobné pro všechny testované materiály.
- Uplatňuje se vliv vodíku v prvních fázích cyklování.
- Závislost maxima anodického a katodického proudu na druhé odmocnině rychlosti skenování je lineární – typické pro reverzibilní proces.
- S rostoucím počtem cyklů se zvyšuje proudová odezva - zvětšuje se plocha pracovní elektrody.
- Poměr anodického a katodického píku se blíží jedné, což ukazuje na kvazireverzibilní proces.
- Po mnohonásobném opakování cyklů se systém dostává do rovnovážného stavu.

Obr. 12 Závislosti anodického a katodického maxima na druhé odmocnině rychlosti skenu

| REGIONÁLNÍ MATERIÁLOVĚ | TECHNOLOGICKÉ VÝZKUMNÉ | CENTRUM

Sorpční testy s fosfáty

FAKULTA

MATERIÁLOVĚ

TECHNOLOGICKÁ

Obr. 13 Srovnání sorpčních kapacit kalů před a po kyselém loužení. (SS-OC kal, CS-KV kal, CSL-loužený KV kal)

Závěry:

VŠB

TECHNICKÁ

OSTRAVA

UNIVERZITA

- Zjištěny podobné sorpční kapacity, ale rozdílné mechanizmy záchytu fosfátů.
- OC-kal: tvorba povrchových komplexů se zinkitem.
- KV-kal: tvorba FePO₄.2H₂O a vznik mono- a bimolekulárních Fe-komplexů.

Obr.14 Srovnání IČ spekter obou kalů před a po sorpci fosfátů.

Sorpce antibiotik na metalurgických odpadech

Použité sorbenty:

- ESP-L loužené odprašky z elektrofiltrů
- VPK-L loužený vysokopecní kal

Podmínky:

- Počáteční koncentrace roztoku C₀= 10 mg/L
- Objem roztoku V = 20 ml
- Doba sorpce 24 hod

Tabulka 3 Charakteristiky vybraných antibiotik

	M (g/mol)	rozpustnost (g/l)
ampicilin (AMP)	349,41	10
amoxicilin (AMX)	365,40	2-3

Obr. 15 Strukturní vzorec AMP

Obr. 16 Strukturní vzorec AMX

Obr. 17 Fázová analýza odprašku ESP

Tabulka 4 Prvková analýza vzorků ESP a VPK

wt.%	Fe	SiO ₂	CaO	MgO	Al ₂ O ₃	К	Na	С
ESP	55,5	5,3	5,7	1,5	2,0	1,9	1,1	2,5
VPK	49,3	7,9	6,8	2,8	1,7	0,1	-	7,7

Obr. 18 Účinnost sorpce ampicilinu (AMP) na odpadech

Obr. 19 Účinnost sorpce amoxicilinu (AMX) na odpadech

- Lepší sorpční schopnosti vykazuje VPK-L než ESP-L
- Účinnost sorpce AMP: ESP-L (56-77%) a VPK-L (67-93%)
- Účinnost sorpce AMX: ESP-L (55-76%) a VPK-L (66-93%)
- Maximální sorpční kapacita pro AMP: q_e = 0,27 mg g⁻¹ (VPK-L)
- Maximální sorpční kapacita pro AMX: q_e = 0,26 mg g⁻¹ (VPK-L)
- Pravděpodobně rozdílné sorpční mechanismy: sorpci AMP a AMX na ESP-L vyhovuje Freundlichova izoterma, sorpci na VPK-L Langmuirova izoterma.

Pyrometalurgické odstraňování Zn ze směsného kalu

OC+VP-528 OC-518A 101 0.15 100 0,3 🛧 678,07 °C 666,82 °C Veight Loss: 0,310 mg Veight Percent Loss: 0. Weight Loss: 0,172 mg Weight Loss: -0,211 mg Weight Percent Loss: -0 /eight Percent Loss: 0.428 0.10 Weight Loss: 1,832 mg Weight Percent Loss: 4,576 % Weight Loss: 0,842 mg Weight Percent Loss: 2,092 % 100 0,2 98 -2 0.05 0 Weight Loss: -0,312 mg Weight Percent Loss: -0,775 % Ð 797.17 eign 1108,44 °C 99 -2 0.1 8 3 259,63 °C NO 0.00 96 98 0,0 -0,05 Weight Loss: 0,268 mg Weight Percent Loss: . 400,57 °C 391.06 °C -0,1 97 -0.10 94 200 400 600 800 1000 1200 200 400 600 800 1000 1200 Exo Up Exo Up Temperature T (°C) Temperature T (°C)

Obr. 20 Termická analýza vzorků směsného OC(70%)+VP(30%) kalu a původního OC-kalu

Obr. 21 Ramanská spektra původního a kalcinovaného (1000°C) OC-kalu

- 350 500°C oxidace Fe^{II} na Fe^{III}
- 500 800°C oxidace C na CO₂
- Dbsah C v kalech cca 4 %

Obr. 22 Srovnání RTG-analýz OC-kalu kalcinovaného při různých teplotách

Tabulka 5 Prvková analýza OC kalu po kalcinaci při různých teplotách

	OC-kal	OC-kal	OC-kal	OC-kal
	700	800	900	1000
CaO	1,79	1,79	1,72	1,76
SiO ₂	2,16	2,19	2,19	2,18
Al ₂ O ₃	0,39	0,37	0,38	0,32
MgO	0,88	0,87	1,09	1,06
Fe ₂ O ₃	74,32	74,42	74,81	75,01
K ₂ O	0,18	0,18	0,15	0,13
MnO	1,33	1,38	1,35	1,35
Cr ₂ O ₃	0,22	0,21	0,21	0,22
P ₂ O ₅	0,23	0,22	0,22	0,23
TiO ₂	0,02	0,02	0,02	0,02
ZnO	13,72	13,73	13,85	13,82
CuO	0,088	0,090	0,090	0,086
PbO	0,591	0,549	0,509	0,512

- Při kalcinaci do 1000°C dochází pouze k fázovým změnám.
- Narůstá podíl hematitu, nelze rozlišit fáze franklinitu a magnetitu.
- Celkový obsah Zn zůstává nezměněn.

Obr. 23 Srovnání fázových analýz vzorků OC-kalu a směsného kalu kalcinovaných při teplotě 1100°C s poměry kal:grafit = 1:1 a 2:1

- Pozorován výrazný nárůst podílu amorfní fáze.
- Proběhla oxidace magnetitu na hematit.
- Nebyly identifikovány fáze zinkitu a franklinitu.
- Předběžné výsledky naznačují u vzorků s poměrem kal:grafit = 1:1 pokles obsahu Zn pod 1%.

Odstraňování alkálií ze vzorků odprašků

Tabulka 6 Obsah sledovaných prvků v původním a louženém odprašku ESP

Prvek	Původní vzorek	L/S = 20 (1x)	L/S = 3 (3x)	L/S = 3 (6x)
Cl	16,60	1,21	0,27	0,12
Na	3,89	0,07	0,05	0,04
К	6,07	0,08	0,07	0,07
MgO	0,81	1,24	1,08	0,94
Fe	33,19	52,45	48,09	50,82
CaO	3,95	4,37	4,38	4,09

Podmínky:

- louženo v demi vodě,
- laboratorní teplota
- doba loužení: 1h

Závěry: u odprašků ESP odstraněno

- **Cl:** 92,71% 98,37% 99,28%
- **Na:** 98,20% 98,71% 98,97%
- **K:** 98,68% 98,85% 98,85%

VŠB	TECHNICKÁ	FAKULTA	REGIONÁLNÍ MATERIÁLOVĚ
hat	UNIVERZITA	MATERIÁLOVĚ	TECHNOLOGICKÉ VÝZKUMNÉ
uh.	OSTRAVA	TECHNOLOGICKÁ	CENTRUM

Děkuji za pozornost