Bonding ability of slags

Research on the management of waste, materials and other products of metallurgy and related sectors

Jozef Vlček

Production of slags from pig iron and steel manufacturing

	Metal production	Slag production	Specific production
	(k	(kg _{slag} /t _{iron}) (kg _{slag} /t _{steel})	
Pig iron manufacturing	4 039	1 529	379
Steel manufacturing	4 974	658	Total132- furnace115- ladle22

Data for the year 2013, ArcelorMittal Ostrava a.s. TŘINECKÉ ŽELEZÁRNY, a.s. VÍTKOVICE STEEL, a.s. VÍTKOVICE HEAVY MACHINERY a.s.

Bonding ability of substances

Binders

Substances connecting particles of other solid matter together

Hydraulic binders

- There are created products, which firstly harden in the air, later harden and become solid both, in the air and water as well
- Hydraulic phases β-C₂S, C₃S, C₃A, C₁₂A₇, C₂F, C₄AF, less important is content of C₃MS₂
- (C CaO, S SiO₂, A Al₂O₃, F Fe₂O₃, M MgO, and C₂S is 2CaO·SiO₂)

Latent hydraulic binders

- Hydraulicity manifests in effect of activator (Ca(OH)₂, water glass), water itself is insufficient for initiation of reactions
- Al₂O₃ and SiO₂ have to be included in amorphous state, CaO helps to form hydraulic products

Slags can show both, hydraulic and latent hydraulic ability as well

Requirements on slags

Common hydraulicity

Presence of hydratable phases β -C₂S, C₃S, C₃A

- determined by the presence of enough big amount of CaO
- slow cooling transformation β -C₂S $\rightarrow \gamma$ -C₂S \approx **10** % volume change
 - \rightarrow disintegration of slags
- hydration of free CaO and MgO
 → disintegration of slags

Better suits steel slag

Latent hydraulicity

Sufficient amount of glassy phase

- fast cooling down
- related to
 - \rightarrow composition
 - \rightarrow viscosity curve
 - \rightarrow transition temperature

Blast furnace slag contains ca. 40 wt.% SiO_2 \rightarrow guaranteed vitrification

Granulated blast furnace slag (standard industrial product) suits to all requirements

Typical slag composition

Slag	Composition (wt.%)				
	CaO	SiO ₂	Al ₂ O ₃	MgO	FeO+Fe ₂ O ₃
Blast furnace	35-38 C:S	≈1:1 -38	6-9	10-14	0,5-1
EAF	35-60	9-20	2-9	5-15	15-30
BOF	30-55	<mark>ا<2:</mark> 8-20	1-6	5-15	10-35
Ladle	30-60	2-35	5-35	1-10	0,1-15

Theoretical and real phase composition of ladle slags

Precondition Σ (CaO,SiO₂,Al₂O₃)=100%

X-Ray phase diffraction

The region of lower SiO₂ content

Balanced phase association

•
$$C_2S - C_3A - C_3S$$

• $C - C_3S - C_3A$

 γ -C₂S, β-C₂S, C₁₂A₇, merwinite C₃MS₂, gehlenite C₂AS, an prtite CAS₂, C₃S, Ca₂AlMnO₅, CaO, Ca₂AlMnO₅

The region of higher SiO₂ content

Balanced phase association

- $C_2S C_3A C_{12}A_7$ $C_2S C_2AS CA$ $C_2S C_3S C_3A$

 γ -C₂S, α' -C₂S, C₁₂A₇, akermanite C₂MS₂, gehlenite C₂AS, anortite CAS₂, MgO, MgO.FeO

Real phase composition of slags

• BF slag

- Aggregate gehlenite, akermanite
- Granulated glassy phase
- Steel furnace slag
 - β -C₂S, FeO, brownmillerite, CaO
- Steel ladle slag
 - β-C₂S, γ-C₂S, C₃S, MgO, merwinite, gehlenite, akermanite, brownmillerite

 β -C₂S, C₃S are hydraulic phases \rightarrow possibility to use slags bonding ability

Standard use of granulated BFS

Cement class	Cement name	Cement mark	Clinker GBFS additional components		Other main additional components
			(w.%)		
II	Slag	II/A-S	80 – 94	6 – 20	-
		II/B-S	65 - 79	21 – 35	-
	Portland blended	II/A-M	80 - 94		6 – 20
		II/B-B	65 - 79		2^{-1} Up to 05.9/
III	Blast furnace	III/A	35 – 64	36 – 65	Up to 95 %
		III/B	20 – 34	66 – 80	-
		III/C	5 - 19	81 -95	-
V	Plandad	V/A	40 – 64	18 – 30	18-30
	Dienueu	V/B	20 – 38	31 - 50	31-50

ČSN EN 197-1 Composition, specification and compliance criteria of cements, Praha: ČNI

- Application of GBFS in common cement
 - Combination of alkali activation and common hydration

Use of latent hydraulicity granulated blast furnace slag (GBFS)

• Slag has an amorphous character

• Treatment process

Products of hydration

As a result of high CaO content the hydration products are similar to hydration products becoming from common cement

Addition of active Al₂O₃ increases representation of products so called geopolymeric type

Sample	GBFS	Fly ash	CEM I 42,5
		(wt.%)	
GBFS	100		
GBFS/FLY ASH	80	20	
РС			100

←PC --GVS →-GVS/POP

Indirect observation in progress of GBFS hydration

- Faster drop in pH → formation of geopolymeric products
- Slower drop in pH → formation of CSH phases
- Confirmed by NMR

Study of hydraulic properties of steel slags

S	sample	sample character	28 days – water activation	28 days – water glass activation	
			(MPa)		/
D	019001	Granulated BF slag	3	54	
D	019005	Tandem furnace slag	4	16	-
D	019006	Tandem furnace slag	5	24	
D	019007	Ladle slag	5	84	
D	019008	Ladle slag	5	48	
D	019017	Blended slag	3	18	-
D	019022	Furnace slag	7	34	-
D	019023	Furnace slag	12	45	
D	019024	BF aggregate	1	16	
D	019025	Casted converter slag	7	42	
D	019026	Converter slag	8	3	
D	019027	Furnace slag	8	48	
D	019028	Granulated BF slag	1	89	
A	Average		5	40	

Use of bonding ability of slags

• Treatment of grained (fine grained) materials to compact wholes

Strength of prepared briquettes up to 11 MPa, without content of conventional binder

Examples of lightweight samples

Lightweight sample from activated GBFS+Fly ash; 3,8 MPa; 722 kg·m⁻³; apparent porosity 72%

Lightweight sample from furnace slag; 3,3 MPa; 930 kg·m⁻³; apparent porosity 60%

Thank You for attention.

